Student's Worksheet

Lesson 4

Lesson Topic: Energy measurements

Objective:

- To understand and apply the law of conservation of energy
- To explain the concept of Potential energy and its measurement
- To explain the concept of Kinetic energy and its measurements
- To explore the ways in which energies seem to 'disappear'

Work:

A.	Potential	Energy	Measu	rement	ts
	_	_		_	

•	Remember the activity where you dropped a ball from 30 cm and it bounced back to 23 cm. How much potential energy is lost in this process?
	We know that
	Energy initial = m g height initial
	Energy $_{final} = m g height _{final}$
	Hence,
	Difference in energies = $m \times g \times (difference in heights) =$
•	What is the Potential Energy of the ball when it just touches the surface?
•	If you let ball keep bouncing up and down, it ultimately stops. What happens to the energy after 3-5 collisions? Where does the energy go?

B. Kinetic Energy Measurements

Roll a ball on the table and measure the distance between any two points you choose.

Distance = _____

Record the time it takes.

Time = _____

Using these values calculate average speed:

Average speed = distance / time _____

- What are the units of speed in your calculations above?
- If the units are not m/s, convert them to these units

Average speed = _____ m/s

Use the known value of mass m to calculate the Kinetic Energy of the ball:

 $KE = \frac{1}{2}mv^2 == \frac{1}{2} \times mass \times (velocity)^2$

• Compare the above value with the value of Kinetic Energy at the tracking speed:

 $KE = \frac{1}{2}mv^2 == \frac{1}{2} \times mass \times (velocity)^2$